Sofian Zalouk

saz43@cornell.edu | szalouk.github.io

RESEARCH INTERESTS

Uncertainty quantification, fairness, and generative modeling in machine learning, with an emphasis on creating trustworthy AI systems for critical domains, such as healthcare.

EDUCATION

Cornell University

2024 - Present

Ph.D. in Computer Science

Ithaca, NY

Advisors: Kilian Q. Weinberger, Chris De Sa

Stanford University

2024

M.S. in Computer Science, Concentration: Artificial Intelligence

Stanford, CA

Advisors: Stefano Ermon, Andrew Ng

GPA: 4.14/4.00

University of Toronto

2020

B.A.Sc. in Electrical Engineering

Toronto, Canada

Ranked 1st out of over 100 students in department.

GPA: 3.96/4.00

ACADEMIC EXPERIENCE

Graduate Research Assistant

Sep 2020 – Present

 $Stanford\ Artificial\ Intelligence\ Laboratory$

Stanford, CA

- Uncertainty quantification and diffusion models with Stefano Ermon
- Machine Learning for healthcare with Andrew Ng and Sharon Zhou

Research Assistant

Summer 2022

Ford-Stanford University Collaboration

Stanford, CA

• Active learning and image segmentation with Andrew Ng and Ram Rajagopal

Undergraduate Researcher

Sep 2019 – May 2020

University of Toronto

Toronto, Canada

• Monocular depth estimation with Andreas Moshovos

Industry Experience

Software Engineer (Intern)

Sep 2018 - Sep 2019

Intel

Toronto, Canada

- Worked on LLVM compiler to analyze and accelerate deep learning tasks on FPGAs
- Improved Intel's OpenCL memory management, reducing runtime and memory overhead by an order of complexity

ASIC Design Engineer (Intern)

Summer 2018

NVIDIA

Santa Clara, CA

• Design and verification of processors for deep learning.

TEACHING EXPERIENCE

Stanford CS 228 (Probabilistic Graphical Models) TA
Stanford CS 229 (Machine Learning) TA
Stanford CS 236G (Generative Adversarial Networks) TA

Winter 2024 Spring 2021

Winter 2021

PUBLICATIONS

Calibration by Distribution Matching: Trainable Kernel Calibration Metrics Charles Marx*, Sofian Zalouk*, Stefano Ermon

NeurIPS - Conference on Neural Information Processing Systems, 2023

*Equal contribution

A System for Automated Vehicle Damage Localization and Severity Estimation Using Deep Learning

2023

2023

Yuntao Ma, Hiva Ghanbari, Tianyuan Huang, Jeremy Irvin, Oliver Brady, **Sofian Zalouk**, Hao Sheng Andrew Ng, Ram Rajagopal, Mayur Narsude

IEEE Transactions on Intelligent Transportation Systems (Impact Factor: 9.551)

PROJECTS

Measuring and Reducing Bias in LLMs introduced by RLHF | GitHub, Poster, Report

Spring 2023

- Awarded "Best Project" in Stanford's CS 224R for identifying and mitigating bias in LLMs due to RLHF
- Conducted comprehensive analysis to assess language polarity, stereotype bias, and pronoun-based bias
- Identified and mitigated increased bias in larger models using a post-hoc self-debiasing method

Data Augmentation for Speech Recognition | GitHub, Report

Winter 2021

- Implemented MaskCycleGAN-VC, the state-of-the-art method for many-to-many voice conversion
- Established the project as the leading implementation of MaskCycleGAN-VC on GitHub, evidenced by being the most starred repository in its category
- Developed data augmentation pipeline for Automated Speech Recognition
- Generated African American Vernacular English utterances from generic American English to address data scarcity

AWARDS AND SCHOLARSHIPS

Best Project Award, Stanford CS 224R (Deep Reinforcement Learning) Instructor: Chelsea Finn	Spring 2023
Outstanding Student Award, University of Toronto Awarded to the top 3 students in Electrical Engineering	2015 - 2020
W.S. Wilson Medal, University of Toronto Awarded to student with highest academic standing in the graduating year	2020
Baptie Scholarship, University of Toronto Awarded to students with high academic standing (top 1%)	2016
TECHNICAL SKILLS	

TECHNICAL SKILLS

Languages: Python, C/C++, JavaScript, HTML/CSS, R, Bash, MATLAB, CUDA

Frameworks: LATEX, Git, RStudio, Jupyter Lab/Notebook, Gdb, Valgrind Libraries: PyTorch, TensorFlow, Keras, Scikit-learn, pandas, NumPy, Matplotlib