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Abstract

Large Language Models are trained on vast
amounts of data and have displayed exceptional
performance on a wide variety of tasks as seen by
recent LLM-powered applications such as Chat-
GPT. Rapid adoption of this technology is tem-
pered by widespread concern regarding model
bias and fairness, as it is believed that bias from
training data will "leak" into a model, resulting
in undesired outputs that are unacceptable in crit-
ical domains such as healthcare or law. This is
especially worrying with Reinforcement Learning
with Human Feedback (RLHF), which utilizes
reward signals derived from direct human interac-
tion to further finetune models.

To evaluate the extent of how bias from human
feedback impacts the biases expressed by a model,
we used the StackExchange dataset consisting
of question/answer pairs from StackExchange, a
popular technical forum where users are predom-
inantly white men. We trained GPT-Neo with
125M parameters and GPT-Neo with 1.3B param-
eters using the RLHF pipeline, which can be bro-
ken down into thee steps: (1) pre-training an LLM
on a specific task or corpus, (2) training a reward
model to mimic human feedback, and (3) fine-
tuning the pre-trained LLM using reward model
feedback. Throughout this process, we perform
various optimizations such as loading the models
in 8-bit and using Low-Rank Adaptation (LoRA)
to reduce their memory footprint and accelerate
training. We also defined a suite of metrics that
measure different aspects of bias, including gen-
eral toxicity, language polarity, gender bias, and
overall hurtfulness.

Using these metrics, we evaluated both of our
GPT-Neo models, along with a 7B-parameter
LLAMA model that was finetuned with RLHF
on the same dataset by HuggingFace researchers
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and had its weights released. We found that across
the board, bias tended to increase as a result of
the RLHF process. Furthermore, when examining
the toxicity of sentence completions, we found
that the toxicity of completions using male pro-
nouns decreased from RLHF finetuning, while the
toxicity of completions using female pronouns
increased — the effect was further amplified as
model size increased. This supports that bias from
a dataset indicates the bias that a model has. Ad-
ditionally, as the size of a model grows, so does
the severity of its bias, as it becomes powerful
enough to develop a more intricate understanding
of biased language data, and "fits" to it better than
a smaller, less powerful model would be able to.

Beyond measuring bias, we also implemented a
technique known as self-debiasing. This post-
hoc approach wraps around an already-trained
model, and prepends phrases to existing prompts
to encourage harmful sentence completions (e.g.,
question "x?" becomes "the following response
contains very hateful, aggressive, disrespectful
language: x?"). Self-debiasing computes the prob-
ability distribution of next words using both the
original prompt, as well as the modified prompt;
it then takes the difference between them and ap-
plies a scaling function, resulting in a new distri-
bution that discourages harmful completions.

After applying self-debiasing to all three models,
we saw that the technique succeeded in reducing
bias metric scores across the board, and seemed to
"equalize" the bias scores for male/female metrics,
suggesting that the technique was able to suppress
the bias in favor of males and skewed against fe-
males introduced by the dataset. However, apply-
ing self-debiasing seemed to make perplexity —
a measure of model output coherence, sensibility,
and meaningfulness — worse as a result of modi-
fying the underlying probability distributions.
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1. Introduction
Large Language Models (LLMs), also known as Foundation
Models (FMs), are machine learning models that have been
trained on vast amounts of data with the aid of extensive
compute resources, optimizations, and training time. These
models are capable of excelling at a wide variety of tasks
with astonishing accuracy and ability as seen by recent LLM-
powered application such as ChatGPT or Midjourney.

While adoption of AI-powered products and tools has
rapidly increased, there are growing ethical concerns being
raised regarding the quality of model outputs given myriad
examples of AI producing harmful, toxic, or discriminatory
outputs as a result of the data they are trained on. This is
especially true when models directly interact with users and
learn from their interactions — an approach that is today
known as Reinforcement Learning with Human Feedback
(RLHF).

Reinforcement learning (RL) has seen a lot of success in
recent year when applied towards issues of model align-
ment towards human preference, leveraging the fact that
RL traditionally performs well where other methods don’t
when it comes to optimizing complicated, non-differential
objectives in language generation tasks by treating them
as sequential decision problems. In the case of RLHF, the
technique leverages human feedback to rank the quality
of outputs from the LLMs based on their alignment with
human preferences, such as helpfulness, correctness and
harmlessness. The human feedback is then used to train a
Reward Model (RM), which can be used to further fine-tune
the LLM using different RL methods.

As seen in cases such as Microsoft’s Tay Chatbot, human
feedback is often biased and can contain hurtful or discrim-
inatory language that may be incorporated into a model’s
outputs via fine-tuning.

2. Related Work
Some of the earliest work investigating the use of RLHF to
improve helpfulness and correctness of LLMs was Deep-
mind’s Sparrow (Glaese et al., 2022). Sparrow used a form
of "self-play" during RLHF training, where the LLM es-
sentially talks to itself to automatically generate multiple
episodes of dialogue. In addition, Sparrow used a multi-
headed hydra model, where all the tasks share backbone
layers, and then diverge into several task-specific fine-tuned
layers.

While the authors of Sparrow reported good results for the
alignment of the fine-tuned LLMs with human preferences,
they also found that their models exhibited strong distribu-
tional biases. In particular, they found that stereotypes and
social biases existed across all their baseline models and

datasets, and that the effect became more pronounced after
fine-tuning with RLHF. This work confirms our presumption
that RLHF incorporates or amplifies biases already present
in used datasets, but failed to thoroughly investigate the
causes of this bias, nor ways to mitigate said bias. The au-
thors provide a speculative explanation: RLHF fine-tuning
makes the LLM less likely to abstain from answering, which
prompts responses that may otherwise not be produced on
account of being less favorable, perhaps in dimensions such
as bias.

In a paper (Ganguli et al., 2022) from Anthropic, authors
describe efforts to "red team" language models and what
they learned. Red teaming — a cybersecurity term originally
used to describe a type of penetration testing — describes
efforts to deliberately probe a language model to produce
harmful outputs. Among other results, this paper found that
LLMs trained using RLHF were significantly more resilient
to red team attempts compared to:

1. Baseline LLMs,

2. LLMs merely prompted to produce "helpful, honest,
and harmless" (HHH) outputs, and

3. LLMs that rank possible responses using a separate,
independent reward model

This suggests that RLHF tunes models to be harder to adver-
sarially prompt for undesired outputs, but does not actually
quantify the amount of bias or toxicity present in model
outputs with any established metrics or datasets.

3. Motivation and Problem Setup
As AI-powered products find their ways into domains where
it is critical for them to produce helpful, correct, harmless,
and unbiased information (such as in the healthcare or crim-
inal justice systems), it is essential that researchers and
practitioners identify how to measure, report, and mitigate
bias wherever possible.

This work aims to measure and mitigate the bias introduced
into an LLM’s outputs through the RLHF training process.
Using metrics that quantify bias from different perspectives,
we aim to evaluate generic basline models, RLHF-fine-tuned
models, and models with debiasing techniques applied to
them to track how bias changes during the RLHF training
process, and whether it leans towards specific stereotypes
or social groups that indicate a distributional bias commen-
surate to what is present in the data.

3.1. Dataset

For the purposes of our investigation, we ground ourselves
in the StackExchange Dataset (Lambert et al., 2023). This

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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is a question/answer dataset collected from processing data
from the Stack Overflow Data Dump — an anonymized sub-
set of all user content on Stack Exchange, a popular Q&A
platform for technical knowledge. Crucially, the dataset
possesses a handful of attributes that make it well-suited for
RLHF approaches:

• Every question has ≥ 2 answers

• Question/answer pairings are assigned scores cor-
responding to a function of answer upvotes:
round(log 2(1 + upvotes))

Combined, these two attributes allow reward model train-
ing (See section 4.2) to perform pairwise ranking to com-
pare candidate answers to a provided question and identify
which answer humans are more likely to favor based on
their scores.

Though this dataset does not explicitly include meta-
data about specific question/answer pairings due to the
anonymity of the Data Dump, a 2022 StackExchange census
identified a majority of users as white or European males
primarily based in the United States, aged 25-34.

As part of our investigation into how social biases from
datasets can leak into model outputs, we were curious
whether biases from the primary demographic of white
men would reveal itself when evaluating bias metrics on
RLHF-fine-tuned models.

4. Training LLMs with RLHF
Given a Large Language Model (LLM) M , a dataset D,
and human feedback on desirable outputs, RLHF directly
optimizes the model M to align with human preferences. In
order to study the downstream impact of RLHF on model
bias, we use a standard pipeline that is composed of three
steps:

1. Pre-training an LLM on a specific corpus.

2. Training a Reward Model (RM) to learn human prefer-
ences.

3. Finetuning the pre-trained LLM with reinforcement
learning using RM feedback.

4.1. Pre-training LLMs

Following prior methods (Ouyang et al., 2022; Stiennon
et al., 2020; Radford et al., 2018), we start by pretraining
LLMs to autoregressively predict the next token in a large
text corpus. This pretraining step is vital to ensure that our
language model learns a meaningful and robust latent rep-
resentation, which can subsequently be transferred for our

specific task. As such, following the method of InstructGPT
Ouyang et al. (2022), we further finetune the pretrained
LLM on a specific corpus DSFT ⊂ D using supervised learn-
ing. This allows us to tailor the LLM to a specific task, i.e.
QA, yielding a pre-trained model MSFT.

4.2. Reward model training

Given the pre-trained model MSFT and a dataset DRM ⊂ D,
the underlying goal is to obtain a reward model (RM) that
assigns scalar scores to outputs representing their alignment
to human preferences. Crucially, the RM uses a backbone
of the pre-trained model MSFT, with added linear layers for
score prediction. The RM is trained using human feedback
to imitate how a human would rate the output. Following
the method of (Ouyang et al., 2022), we train the RM using
a pairwise ranking loss:

LRM(θ) = −E(x,yj ,yk)∼DRM [log(σ(rθ(x, yj) − rθ(x, yk)))]

where rθ(x, y) is the scalar output of the RM for prompt x
and output y, yj is the preferred output out of the pair of
yj and yk. Intuitively, LRM encourages the RM to correctly
identify outputs which better align with human preferences.

Given sufficient time and resources, the standard approach is
to use human annotators to rank outputs for a given prompt
based on human preferences. However, this is expensive
and slow due to the number of training samples needed
for convergence and the inherent latency of human reading
and annotation speed. With the StackExchange dataset,
following closely from (Askell et al., 2021), we can directly
infer the ranking of outputs based on the number of upvotes
that it has received.

4.3. Finetuning with reinforcement learning

With the pre-trained model MSFT, a reward model (RM),
and a dataset DRL ⊂ D, our goal is to use reinforcement
learning to align the LLM with human preferences. Follow-
ing prior works of Ouyang et al. (2022); Askell et al. (2021);
Stiennon et al. (2020), we use Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) for LLM fine-tuning, as
shown in Figure 1. First, we generate responses from the
model using prompts from DRL. Then, we use our trained
RM to evaluate the concatenated model output’s alignment
to human preferences. To maintain output coherence and
mitigate over-optimization of rewards, as in Ouyang et al.
(2022), we incorporate a KL-Divergence penalty. For a
given prompt x and model output y, the PPO reward is
defined as:

R(x, y) = rθ(x, y) − β KL(MRL(x, y)||MSFT(x, y))

https://archive.org/details/stackexchange
https://stackexchange.com/
https://survey.stackoverflow.co/2022/
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Figure 1. The RL finetuning stage of the RLHF pipeline. First, we generate responses from the LLM (Top). Then, we use the RM to
evaluate the alignment of responses with human preferences (Middle). Lastly, we finetune the LLM with PPO using the RM score and
KL-Divergence penalty (Bottom).

Attribute Name Description

toxicity rude, disrespectful or unreasonable lan-
guage

severe toxicity very hateful, aggressive, disrespectful lan-
guage

sexually explicit sexually explicit language
threat a threat
profanity swear words, curse words, or other ob-

scene or profane language
identity attack negative or hateful language targeting

someone because of their identity

Table 1. Attributes used for self-debiasing and their descriptions.

where rθ(x, y) is the RM score, MRL is the active model,
and MSFT is the reference pretrained model. Intuitively, the
revised PPO rewards penalize models which deviate too far
from the initial per-token likelihoods, denoted by a large
KL-divergence between the current and reference models.

In a similar manner to the reward model, we use the initial
embeddings layers of the pre-trained model with added
projection layers to output the value function during PPO.
This is a standard approach used by InstructGPT (Ouyang
et al., 2022).

5. Self-Debiasing
When trained on large corpora, LLMs often exhibit the same
undesirable biases found in the data. These undesirable bi-
ases can be further exacerbated through human feedback
in RLHF, which introduces an additional source of bias
based on individual and collective annotator preferences.

As we study the impact of RLHF on the bias exhibited by
LLMs, we also investigate an effective method of mitigat-
ing bias in models, known as self-debiasing (Schick et al.,
2021). By leveraging the LLM’s ability to recognize their
undesirable biases and the toxicity of their outputs, self-
debiasing reduces the probability of producing problematic
text. Self-debiasing is particularly appealing since it can
be applied post-hoc, requiring no additional model training
and minimal computational overhead. As such, it is efficient
method that can be applied during inference time to adjust
the model’s predictions to minimize undesrible outputs.

Harmful words

pM (ω | x)

pM (ω | sdb(x, y))

p̃M (ω | x)

Figure 2. Visualization of the self-debiasing algorithm. We com-
pute the probability of outputs using the original prompt (Top),
and using the self-debiasing prompt (Middle). By computing their
difference, we can identify harmful words, and scale down their
probabilities to yield a debiased distribution (Bottom).
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As before, let M be a fine-tuned LLM, and let x be a prompt
for which we wish to produce a response. Further, let y be a
textual description of an undesirable attribute (See Table 1).
Following Schick et al. (2021), we generate a self-debiasing
input

sdb(x, y) = "The following text contains y: x"

Importantly, the self-debiasing input encourages the model
to assign high likelihoods to problematic outputs. To eluci-
date self-debiasing through an example, consider a specific
prompt

x = "The lawyer thanked the clerk because she"

If we select severe toxicity as the undesirable attribute, then
the self-debiasing input would be sdb(x, y) = "The fol-
lowing text contains very hateful, aggressive, disrespectful
language: The lawyer thanked the clerk because she".

Intuitively, the self-debiasing prompt tells the model that
hateful, aggressive and disrespectful continuations are ex-
pected, encouraging the model to assign higher probabilities
to undesirable texts. Crucially, self-debiasing leverages the
ability of LLMs to recognize their undesirable biases and
the toxicity of their outputs.

Using these inputs, we compute both pM (ω|x), the dis-
tribution of next words given the original prompt, and
pM (ω|sdb(x, y)), the distribution obtained using the self-
debiased input. As previously discussed, undesirable words
will be given a higher likelihood by pM (ω|sdb(x, y)) than
by pM (ω|x). Concretely, the difference between these dis-
tributions

∆(ω, x, y) = pM (ω|x) − pM (ω|sdb(x, y)) (1)

captures the problematic words, as seen in Figure 2. We use
this fact to obtain a new debiased probability distribution

p̃M (ω|x) ∝ α(∆(ω, x, y)) · pM (ω|x)

where α : R → [0, 1] is a scaling function used to alter the
likelihood of undesirable words.

Following Schick et al. (2021), instead of forcing the proba-
bility of undesirable words to be zero, we use an exponen-
tially decaying function to scale the probabilities

α(pω) =
{

1 if pω ≥ 0
eλpω otherwise

where the day constant λ is a hyperparameter. We apply self-
debiasing simultaneously for all attributes listed in Table 1.
Given a set of attribute descriptions Y = {y1, . . . , yn}, we
replace ∆(ω, x, y) in Eq. 1 with

∆(ω, x, Y ) = min
y∈Y

∆(ω, x, y)

so that a word is considered harmful if it has a higher proba-
bility according to at least one self-debiasing input.

6. Experiments
6.1. Models and Optimizations

To examine trends across different model sizes, we focused
on three models as backbones for our pre-trained language
model and reward model: GPT-Neo with 125M parameters
(GPT-Neo-125M), GPT-Neo with 1.3B parameters (GPT-
Neo-1.3B), and LLAMA with 7B parameters (LLAMA-7B).
GPT-Neo-125M and GPT-Neo-1.3B are for the most part
equivalent to GPT2 and GPT2-XL, respectively – during our
preliminary model investigation, we found that the GPT2
architecture had fundamental incompatibilities with some of
the functionality required to run our RLHF training pipeline
necessitating the switch to GPT-Neo (Black et al., 2021).

To train GPT-Neo-125M, we used a g4dn.xlarge instance
on AWS which corresponds to an NVIDIA T4. Training a
reward model with GPT-Neo-125M as a backbone took 5+
hours; performing fine-tuning with the reward model took
30+ hours. In order to train GPT-Neo-1.3B in a reasonable
amount of time, we used four NVIDIA A100s.

Training LLAMA-7B was simply infeasible given our com-
putational resources and limitations, so we instead used
model weights released on HuggingFace from researchers
who had previous done work on performing RLHF with the
same StackExchange dataset that we used.

To facilitate the training process, we referenced
lvwerra/trl (von Werra et al., 2020). We incor-
porated code from timoschick/self-debiasing
(Schick et al., 2021) to help understand and re-implement
self-debiasing. Both are based on the HuggingFace
Transformers library, which itself uses PyTorch.

In order to make it computationally feasible to train these
models on our own, we incorporated a number of optimiza-
tions: for instance, we loaded our models in 8-bit, and
used techniques such as Low-Rank Adaptation (LoRA) (Hu
et al., 2021) to aggressively reduce our models’ memory
footprints.

6.2. Evaluation Metrics

We devised the following metrics to evaluate our LLMs’
outputs with the help of the HuggingFace Evaluate library,
which provides a simple interface to explore model bias: (1)
prompting the language model with a set of prompts, and (2)
evaluating the outputs using a particular metric. We focused
on the following four measurements:

1. Toxicity — Hate speech aka abusive speech targeting
specific social group characteristics such as ethnic ori-

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://github.com/huggingface/evaluate
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gin, religion, gender, or sexual orientation

2. BOLD Regard — Language polarity and social percep-
tion (positive, negative, neutral, other) with respect to
certain demographics

3. WinoBias — Gender bias regarding stereotypical and
anti-stereotypical sentences (e.g. "nurses are [female,
male]", respectively)

4. HONEST — Hurtfulness of sentence completions

Toxicity quantifies the toxicity of text using a pretrained
hate speech classification model (Vidgen et al., 2021). In-
puts are broadly classified to be either "offensive" or "not
offensive" with a score normalized between 0 and 1; class
values are aggregated to produce a "maximum toxicity"
score (MT) over all predictions, and a "toxicity ratio" score
(TR) that quantifies the percentage of predictions with toxi-
city above 0.5. This was evaluated using prompts from the
AllenAI RealToxicityPrompts dataset (Gehman et al., 2020)
containing prompts across multiple "toxicity classes."

BOLD (Dhamala et al., 2021) stands for "Bias in Open-
ended Language Generation Dataset." It is used to evaluate
fairness in language generation across different domains
cutting across profession, gender, and race. Regard (Sheng
et al., 2019) is a metric that estimates language polarity
and social perceptions towards a certain demographic, per-
forming pairwise comparisons between two inputs and their
completions. Here, we measured Regard between male and
female actors.

WinoBias (Zhao et al., 2018) is a dataset containing input
prompts describing people’s occupations that differ only
by a pronoun or other gender identifier (e.g. "nurses are
female..." and "nurses are male...", or "I asked the nurse.
She said..." and "I asked the nurse. He said..."). Here, we
passed the pairs of inputs to our model, and evaluated the
completions for MT and TR.

HONEST (Nozza et al., 2021) measures hurtful sentence
completions using HurtLex (Bassignana et al., 2018), a
large lexicon of words tagged as offensive, aggressive, and
hateful. The metric aims to measure how often sentences are
completed with hurtful words, and whether the frequency
changes based on a certain group (e.g. different genders).

We originally wanted to evaluate our models during the train-
ing process to examine how the metrics changed over time,
but this proved to increase training time by an unacceptable
amount. As a result, we performed post-hoc evaluation of
our models once RLHF fine-tuning had completed.

7. Results & Discussion
Through our experiments and results, we aim to address
two key questions: 1) Does RLHF increase model Bias? 2)
Does self-debiasing effectively mitigate undesirables bias?
To that end, we address each question separately:

7.1. Impact of RLHF on model bias

Shown in Table 2, we compare the bias of models before
and after RL finetuning on human preferences. Across all
models, we observe that bias generally increases after RL
finetuning. Interestingly, we observe that this increase in
bias is much more pronounced for larger models.

Specifically, for the WinoBias evaluation dataset, when com-
paring the toxicity of model continuations to male and fe-
male prompts, we observe that RL finetuning significantly
reduces toxicity for male prompts in contrast to female
prompts, which generally increase. We observe this trend
with both Maximum Toxicity and Toxicity Ratio, indicat-
ing that our models are producing generally more toxic
continuations to female prompts, with the most egregious
continuations being noticeable worse than for male prompts.

Further, for the HONEST metric, we observe that our mod-
els produce generally more harmful continuations for all
groups after RL finetuning. Interestingly, similar to Wino-
Bias, we also observe a trend where models tend to produce
more harmful continuations for female prompts compared
to male ones after RL finetuning.

For the BOLD dataset, it is generally unclear whether the
models become more biased after RL finetuning. In some
cases such as with GPT-Neo 125M, RLHF makes the model
more biased in favor of men, while the opposite is observed
for GPT-Neo 1.3B. However, the lack of a general trend
could be attributed to the nature of the BOLD dataset, where
male and female prompts are used in the context of acting.
Focusing on a specific setting of gender bias in acting could
be prone to noise and inconclusive results. In addition, the
effect of RLHF on general model toxicity is unclear, with
different trends observed for different models.

Interestingly, across all metrics, we observe a clear increase
in bias in favor of men. This increase could be attributed
to the inherent bias of the StackExchange dataset, which
consists primarily of texts from white men of American or
European descent. In that case, it is clear that dataset bias
influences the model through the rewards which are used
for RL finetuning.

7.2. Effectiveness of self-debiasing

In Table 3, we compare the bias of models before and after
applying self-debiasing. After applying self-debiasing to
our three RL-finetuned models, we observed a general trend

https://huggingface.co/spaces/evaluate-measurement/toxicity
https://huggingface.co/datasets/AlexaAI/bold
https://huggingface.co/spaces/evaluate-measurement/regard
https://huggingface.co/datasets/wino_bias
https://huggingface.co/spaces/evaluate-measurement/honest
https://ceur-ws.org/Vol-2253/paper49.pdf
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Metrics GPT-Neo 125M GPT-Neo 1.3B LLAMA-7B

SFT RL SFT RL SFT RL

Toxicity MT 0.9920 0.9938 0.9996 0.9462 0.9996 0.9989
TR 0.0200 0.0210 0.0240 0.0280 0.0280 0.0230

BOLD Regard

Positive -0.0276 0.0095 0.0043 -0.0271 -0.0252 -0.0782
Neutral -0.0104 -0.0289 -0.0106 0.0230 0.0113 0.0319
Other 0.0052 0.0064 0.0005 0.0085 0.0075 0.0045
Negative 0.0123 0.0130 0.0058 -0.0044 0.0026 0.0419

WinoBias

Accuracy 0.5540 0.5437 0.4442 0.4442 0.4617 0.3471
MT - Male 0.4509 0.3566 0.4743 0.5082 0.4200 0.9468
TR - Male 0.0000 0.0000 0.0000 0.0049 0.0000 0.0049
MT - Female 0.8028 0.8028 0.6401 0.7947 0.3947 0.8935
TR - Female 0.0170 0.0364 0.0049 0.0146 0.0000 0.0073

HONEST

Queer 0.0011 0.0036 0.0089 0.0236 0.0089 0.0031
Nonqueer 0.0046 0.0091 0.0020 0.0164 0.0044 0.0046
Male 0.0169 0.0200 0.0144 0.0200 0.0133 0.0077
Female 0.0077 0.0255 0.0222 0.0182 0.0156 0.0108

Table 2. Comparison of evaluation metric scores between supervised fine-tuned models (Step 1 of the RLHF pipeline, "SFT") and RLHF
fine-tuned models (Step 3 of the RLHF pipeline, "RL").

Metrics GPT-Neo 125M GPT-Neo 1.3B LLAMA-7B

RL Debias RL Debias RL Debias

Perplexity 4.6957 5.0701 3.4688 3.7813 4.1250 4.6875

Toxicity MT 0.9938 0.9989 0.9462 0.9989 0.9989 0.9997
TR 0.0210 0.0080 0.0280 0.0140 0.0230 0.0120

BOLD Regard

Positive 0.0095 -0.0301 -0.0271 -0.0216 -0.0782 -0.0576
Neutral -0.0289 0.0074 0.0230 0.0123 0.0319 0.0515
Other 0.0064 0.0076 0.0085 0.0038 0.0045 -0.0002
Negative 0.0130 0.0150 -0.0044 0.0055 0.0419 0.0064

WinoBias

Accuracy 0.5437 0.4782 0.4442 0.4539 0.3471 0.4296
MT - Male 0.3566 0.2851 0.5082 0.2362 0.9468 0.9803
TR - Male 0.0000 0.0000 0.0049 0.0000 0.0049 0.0049
MT - Female 0.8028 0.2074 0.7947 0.7584 0.8935 0.2214
TR - Female 0.0364 0.0000 0.0146 0.0049 0.0073 0.0000

HONEST

Queer 0.0036 0.0057 0.0236 0.0111 0.0031 0.0000
Nonqueer 0.0091 0.0086 0.0164 0.0267 0.0046 0.0033
Male 0.0200 0.0129 0.0200 0.0133 0.0077 0.0018
Female 0.0255 0.0129 0.0182 0.0289 0.0108 0.0023

Table 3. Comparison of evaluation metric scores between RLHF fine-tuned models ("RL") and RLHF fine-tuned models with self-
debiasing applied ("Debias"). Additionally, a Perplexity score measuring general model output "understandability" is included.

that bias decreased.

For instance, Toxicity Ratio was reduced by a factor of
two or better for each model, and both Maximum Toxic-
ity and Toxicity Ratio improved across the board for both
male and female completions when looking at the WinoBias
evaluation dataset.

Scores for the BOLD and HONEST dataset metrics im-
proved, and the improvement was more noticeable as model
size increased, suggesting that larger models may be more
susceptible to techniques that mitigate bias. This may be
the result of larger models’ general improved comprehen-
sion and understanding of language data, which may have
resulted in richer outputs (and as a result less-biased com-
pletions) when self-debiasing inputs were passed in.

Though these results sound very promising with respect
to the self-debiasing technique’s ability to reduce model

output bias, it does not come without costs. In particular,
we noticed that perplexity — a measure of general model
coherence, sensibility, and meaningfulness — became worse
after applying self-debiasing. This was true across all model
sizes. It makes sense that self-debiasing might result in
worse model output quality, as it is a fairly coarse method
that modifies the probability distributions used to generate
continuations, and may inadvertently reduce general model
output quality in order to reduce bias.

7.3. Impact of LLM size on bias and self-debiasing

In Tables 2 and 3, we observe that larger models become
more biased after RL finetuning, and are more effectively
debiased compared to smaller models. In order to reason
about this dependence on model size, we compare the train-
ing dynamics during PPO training for GPT-Neo 125M and
GPT-Neo 1.3B. As seen in Figure 3a, both models are mini-
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Figure 3. We visualize PPO loss (Left) and KL-divergence (Middle), and the mean rewards (Middle) during RLHF training with PPO.
There is a clear tradeoff between maximizing rewards and divergence from initial model. As a result, over-training will lead to the model
learning to optimize rewards in a non-meaningful way, i.e. at the cost of output "understandability".

mizing the PPO loss throughout training. However, as seen
in Figure 3c, we observe that while GPT-Neo 1.3B is able to
effectively optimize rewards, GPT-Neo 125M achieves min-
imal improvement in rewards during training. This indicates
that GPT-Neo 125M is struggling meaningfully align to hu-
man preferences during training. Given these observations,
we find that smaller models, such as GPT-Neo 125M, strug-
gle with the complex QA task of the StackExchange dataset.
Since the smaller models cannot meaningfully capture the
StackExchange task, they are unable to appropriately model
the human preferences through the RM. As such, they are
likewise unable to effectively optimize rewards during RL
finetuning. The inability of smaller models to appropriately
model human preferences explains our observations in Ta-
bles 2 and 3; that larger models become more biased after
RL finetuning, and are more effectively debiased compared
to smaller models.

8. Conclusion
From our experiments with RLHF training, we noticed that
RLHF did increase model bias in general, often reflecting
the known biases in the training dataset. From our exper-
iments in applying self-debiasing, we found that it was
an effective method for mitigating undesirable model bias
across several evaluation metrics. However, we also iden-
tified a clear tradeoff between model bias and perplexity,
aka output "understandability." Our findings match those of
Schick et al. (2021), showing that while self-debiasing can
be effective, it leads to a mild degradation in perplexity.

Additionally, we observed a clear dependence on model size
for the trends observed for both RLHF training as well as
self-debiasing. Through investigating the training dynamics
of RL finetuning, this dependence could be attributed to the
inability of smaller models to meaningfully capture human
preferences for a complex task like StackExchange QA.

8.1. Future Work

Continuing from the results discussed above, we identified
a few natural next steps for investigation:

1. Incorporating evaluation metrics into the training
process as reward signals. This would allow RM
training to explicitly care about mitigating bias to en-
sure the corresponding metrics do not increase severely
during RLHF finetuning.

2. Performing more extensive training with greater
computational resources. Given our computational
resources, it is currently infeasible to train LLAMA-7B
in any reasonable amount of time. Additionally, our
general lack of GPUs meant it is difficult to distribute
or parallelize training to any significant degree. Having
more resources would allow us to take a deeper dive
into how truly large models such as LLAMA-7B work
and are affected by biases present in training data.

3. Examine effects of early stopping based on KL-
Divergence values. As seen in 3b and 3c, larger
models exhibited a more dramatic increase in KL-
Divergence and reward mean during the training pro-
cess. This indicates that larger models learned better,
but also drifted further from the pretrained reference
model, which may inform the increase in bias. Per-
forming early stopping may be sufficient to have model
outputs with sufficient quality, yet without bias intro-
duced from extended finetuning.
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9. Contributions
Sofian: Implemented bias and perplexity evaluation
pipelines. Set up models, performed training, and managed
experiments. Implemented self-debiasing for LLaMA mod-
els. Jointly worked through integrating lvwerra/trl code for
RLHF training pipeline. Jointly wrote report and discussed
ideas and experiments throughout project.

Maxwell: Jointly work through modifying and incorporat-
ing lvwerra/trl code into customized RLHF training pipeline
for pretraining, reward model training, and RL finetuning.
Investigated and helped implement/debug self-debiasing.

We discussed performing hyperparameter sweeps and im-
plementing different RL algorithms during our original
breakdown; we ended up not doing these due to (1) the
lengthy training process for just a single model making it
prohibitively expensive to perform sweeps, and (2) shifting
our focus to investigating and mitigating bias in general,
rather than its relationship to specific RL algorithms.
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